BRCA1 modulates the autophosphorylation status of DNA-PKcs in S phase of the cell cycle

نویسندگان

  • Anthony J. Davis
  • Linfeng Chi
  • Sairei So
  • Kyung-Jong Lee
  • Eiichiro Mori
  • Kazi Fattah
  • Jun Yang
  • David J. Chen
چکیده

Non-homologous end-joining (NHEJ) and homologous recombination (HR) are the two prominent pathways responsible for the repair of DNA double-strand breaks (DSBs). NHEJ is not restricted to a cell-cycle stage, whereas HR is active primarily in the S/G2 phases suggesting there are cell cycle-specific mechanisms that play a role in the choice between NHEJ and HR. Here we show NHEJ is attenuated in S phase via modulation of the autophosphorylation status of the NHEJ factor DNA-PKcs at serine 2056 by the pro-HR factor BRCA1. BRCA1 interacts with DNA-PKcs in a cell cycle-regulated manner and this interaction is mediated by the tandem BRCT domain of BRCA1, but surprisingly in a phospho-independent manner. BRCA1 attenuates DNA-PKcs autophosphorylation via directly blocking the ability of DNA-PKcs to autophosphorylate. Subsequently, blocking autophosphorylation of DNA-PKcs at the serine 2056 phosphorylation cluster promotes HR-required DNA end processing and loading of HR factors to DSBs and is a possible mechanism by which BRCA1 promotes HR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks.

DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PKcs subunits, is the key component of the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Although the kinase activity of DNA-PKcs is essential for NHEJ, thus far, no in vivo substrate has been conclusively identified except for an autophosphorylation site on DNA-PKcs itself (threonine 2609). Her...

متن کامل

اثرات گاز کلر بر سیکل سلولی و محتوی DNA گلبول‌های سفید موش سوری The Effects of Chlorine on Cell Cycle and DNA Content of WBC in Mice

    Background & Aim: Chlorine has been known as a mucus membranes and respiratory tract irritant. This gas can increase free radicals which cause cell damage. The aim of the present study was to measure DNA content and cell cycle in white blood cells after chronic chlorine poisoning. Materials & Methods: A clinical experimental study was carried out on 80 male mice(40 mice as sample and 40 as ...

متن کامل

MDC1 regulates DNA-PK autophosphorylation in response to DNA damage.

DNA damage initiates signaling events through kinase cascades that result in cell cycle checkpoint control and DNA repair. However, it is not yet clear how the signaling pathways relay to DNA damage repair. Using the repeat region of checkpoint protein MDC1 (mediator of DNA damage checkpoint protein 1), we identified DNA-PKcs/Ku as MDC1-associated proteins. Here, we show that MDC1 directly inte...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

Expression of DNA-PKcs and BRCA1 as prognostic indicators in nasopharyngeal carcinoma following intensity-modulated radiation therapy

The mechanisms of radiation-induced effects in cancer mainly involve double-strand breaks (DSBs) which are important in maintaining the stability of genes. The DNA repair genes breast cancer 1 (BRCA1) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are capable of maintaining genetic stability through two distinct and complementary repair mechanisms for DNA DSBs, known as repair-ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014